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Abstract

In the category of R-modules over rings many authors studied the con-

cepts of projective and injective modules and its generalization. Saleh,

M. studied weak projectivity and weak injectivity over R- modules. In

this thesis, we study some forms of projectivity and injectivity of semi-

modules over semirings especially we generalize the concept of weakly

projective module for weakly projective semimodule and we introduce

some of its basic characteristics which are analogous to ring theory

also we study its dual concept which is weakly injective semimodule

and we study some of its related properties in a similar manner.

Keywords: Semiring; Semimodule; Projective semimodule; In-

jective semimodule; Weakly projective semimodule; Weakly injective

semimodule.
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

Semirings considered as a common generalization of rings which have im-

portance in different fields in mathematics and computer science. The defini-

tion of semirings was first appear explicitly in 1934 by Vandiver. Semiring is

defined simply as a ring without negative elements (without the requirement

of additive inverse).

The definition of semimodules was introduced during the period of

1981 - 1990 in a series of several papers by M. Takahashi. The construction

of semimodules over semirings is corresponding to the construction of module

over ring which has a great role in characterizing properties of the semiring

and it can be defined simply like a module over a ring except that it is only

a commutative monoid rather than an abelian group.

The concepts of ‘injectivity’ and ‘projectivity’ of objects on R-modules

were studied in [5]. Dually these two concepts introduced in [1] for semimod-

ules over semirings.

1
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In 1990, weak injective modules were studied in [1] by S.K. Jain and

S.R. López-Permouth. After that many properties related to this concept

were studied by them in [12] that we will generalize some of its results for

semiring theory in this research.

In 1993, S.K. Jain, S.R. López-Permouth and Saleh, M. studied a dual

concept of weakly injective modules which is weakly projective modules in

[13] that we will also generalize some of its results for semiring theory in this

research.

Generalizing the last two mentioned concepts for semiring theory

based on two basic concepts needed for this work ”projective cover” dually

”injective envelope” which were studied recently in 2014 - 2016 by S.N. Il’in

in [10], [11] respectively.

Our basic reference in semiring theory is Golan’s book [9] - ”Semirings

and their Applications”. We assume in this thesis that all semimodules are

right and unitial.

Our thesis consists of three main chapters. In chapter 1, we review the

most important definitions, results and theorems in semiring theory that we

need later in this thesis. In chapter 2, we present the concept of weak relative

projectivity of right S-semimodule, also we study some properties related to

the concept. In chapter 3, we introduce the dual concept of weak relative

projectivity which is weak relative injectivity and dualize most of the related

properties.

In this chapter, we review basic results and definitions which are helpful

later in next chapters. Mainly depending on Golan’s book [9] as a needful

reference.
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1.2 Basics in Semimodules

Basic definitions and results in semimodule theory are provided in this sec-

tion.

Definition 1.1. (Semigroup). [9] An algebraic structure (S, ∗) with a non-

empty set S and an operation ∗ is called semigroup if it satisfies the following

properties:

1. The operation ∗ is binary that is u ∗ v ∈ S for all u, v ∈ S.

2. The operation ∗ associative that is (u ∗ v) ∗ w = u ∗ (v ∗ w) for all u, v

and w ∈ S.

Example 1.2. The sets of real, integer and complex numbers under multi-

plication are semigroups.

Definition 1.3. (Monoid). [9] A monoid (M, ∗) is a semigroup with an

identity element that is there exists e in M such that for every element

a ∈ M the equation a ∗ e = e ∗ a = a holds. Therefore, the monoid is

characterized by the triple (M, ∗, e).

Definition 1.4. A commutative monoid (an abelian monoid) is a monoid

whose operation is commutative.

Example 1.5. • The set of natural numbers under addition (N,+), is a

commutative monoid.

• Integer numbers under multiplication (Z,×) is a commutative monoid with

identity element one.

Definition 1.6. A group (G, ∗) is a monoid with an inverse element that is

there exists a in G such that for every element b ∈ G the equation a ∗ b =

b ∗ a = e.
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Definition 1.7. (Ring). [5] A ring (R,+, .) is a nonempty set R and two

binary operation addition + and multiplication . satisfying the following

conditions:

1. (R,+, 0) is an abelian group;

2. (R, ·) is a semigroup;

3. Multiplication distributes over addition from both sides;

If there exists a multiplicative identity then we say that R is a ring with

unity.

Definition 1.8. (Module). [9] A right Module over a ring R is an abelian

group (M,+, 0M) with a map M × R 7→ M denoted by (m, r) 7→ mr which

called scalar multiplication in which the following conditions satisfied for all

m1,m2 ∈M, r1, r2 ∈ R:

1. (m1r1)r2 = m1(r1r2);

2. (m1 +m2)r1 = m1r1 +m2r1;

3. m1(r1 + r2) = m1r1 +m1r2;

4. m11 = m1;

Definition 1.9. (Semiring). [9] A semiring (S, +, .) is a nonempty set S and

two binary operation addition + and multiplication . satisfying the following

conditions:

1. (S,+, 0) is a commutative monoid;

2. (S, ·, 1) is a monoid;

3. Multiplication distributes over addition from both sides;
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4. 1 6= 0. (That is the case when 0 = 1, and so S = {0}, is excluded).

5. 0s′ = s′0 = 0 for all s′ ∈ S.

Example 1.10. [9] A bounded distributive lattice D = 〈D,∨, 0,∧, 1〉 such

that ∧ distributes over ∨ that is α∧(β∨γ) = (α∧β)∨(α∧γ) for all α, β ∈ D

where 0 is the unique minimal element and 1 is the unique maximal element,

D is a semiring.

Definition 1.11. (Semimodule). [9] A right semimodule over a semiring

S is a commutative monoid (M,+, 0M) with a map M × S 7→ M denoted

by (m, s) 7→ ms which called scalar multiplication in which the following

conditions satisfied for all m1,m2 ∈M, s1, s2 ∈ S:

1. (m1s1)s2 = m1(s1s2);

2. (m1 +m2)s1 = m1s1 +m2s1;

3. m1(s1 + s2) = m1s1 +m1s2;

4. m11 = m1;

5. m10s = 0Ms1 = 0M .

In the same way left S-semimodules are defined. Any semiring is a right and

left semimodule over itself.

We denote the category of right S-semimodules by MS.

Definition 1.12. (Subsemimodule). [9] A nonempty subset A of a right

S-semimodule B is a subsemimodule of B if and only if it is closed under

addition and scalar multiplication which denoted by A ≤ B.

Example 1.13. If X is a subset of a right S-semimodule Y then the in-

tersection of all subsemimodules of Y which contains X is a subsemimodule
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of Y which is the subsemimodule generated by X. This semimodule is

just XS = {x1s1 + · · · + xnsn|xi ∈ X, si ∈ S}. If Y is the subsemimodule

generated by X then X is said to be generating set of Y , that is X is a

set of generators for Y If X generates all of the semimodule Y . A right

S-semimodule is finitely generated if it has a finite set of generators .

Definition 1.14. (Subtractive). [9] A nonempty subset X of a right S-

semimodule Y is subtractive if and only if x1 + x2 ∈ X and x1 ∈ X imply

that x2 ∈ X for all x1, x2 ∈ Y .

Definition 1.15. (Homomrphism). [9] Let U, V be a right S-semimodules

of a semiring S, then a function α : U → V is an S-homomrphism if and

only if the following holds:

1. α(u1 + u2) = α(u1) + α(u2) for all u1, u2 ∈ U .

2. α(us) = (α(u))s for all u ∈ U and s ∈ S.

� Image of α is Im(α) = {α(u) | u ∈ U} which is a subsemimodule of V .

Since if α(u1), α(u2) ∈ Im(α) then α(u1) + α(u2) = α(u1 + u2) and so

α(u1)+α(u2) ∈ Im(α) since u1 +u2 ∈ U , that is Im(α) is closed under

addition. Now, α(u1)s = α(u1s) where u1s ∈ U and so α(u1)s ∈ Im(α)

that is Im(α) is closed under scalar multiplication.

� kernel of α is ker(α) = α−1{0V } which is subtractive subsemimodule

of V . Since if u1 +u2 ∈ Ker(α) and u1 ∈ Ker(α) then α(u1)+α(u2) =

α(u1 + u2) = 0 but α(u1) = 0 and so α(u2) = 0 that is u2 ∈ Ker(α)

Definition 1.16. [9] Let S be a semiring and let {Ui | i ∈ D} be a family

of right S-semimodules. The external direct sum of the S-semimodules
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Ui is ⊗i∈DUi = {〈ui〉 | ui 6= 0 for only finitely many indices i} under com-

ponentwise addition and scalar multiplication. As a special case for two

semimodules U, V we define their external direct sum as follows:

U ⊕ V = {(α, β) | α ∈ U and β ∈ V }

with componentwise addition and scalar multiplication.

Remark 1.17. Let {Ui | i ∈ D} be a family of right S-semimodules and

U be a right S semimodule then, for each t in D we have canonical S-

homomorphisms λt : Ut → ⊗Ui, defined by λt(ui) = 〈vi〉, where

vi =

 0 if i 6= t

ut if i = t
. (1.1)

• If we have an S-homomorphism gi : Ui → U for each i ∈ D then there

exists a unique S-homomorphism g : ⊗i∈DUi → U such that gi = gλi for

each i ∈ D.
⊗i∈DUi M

Ui

g

λi gi

Definition 1.18. [9] If {Ui, i ∈ I} is a family of S-subsemimodules of an S-

semimodule U , then U is the internal direct sum of the subsemimodules

Ui written U = ⊕i∈IUi if and only if each element u ∈ U can be written

uniquely as
∑
ui, where ui ∈ Ui for each i ∈ I, that is U =

∑
ui and

Uj ∩ (
∑

i 6=j Ui) = 0.

Definition 1.19. (Direct summand). [9] Let S be a semiring, then an S-

semimodule U is called a direct summand of an S-subsemimodule V if and

only if there is an S-subsemimodule V ′ of U such that U = V ⊕ V ′.
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• Notation: For an arbitrary index set I the external direct sum of I copies

of a semimodule U is denoted by U (I). Also, Un represent the external direct

sum of n factors of U .

Example 1.20. If U is a right S-semimodule generated by a subset V then

we have a surjective S-homomorphism S(V ) → U . We always have a surjec-

tive S-homomorphism from S(U) to U .

Definition 1.21. (Congruence relation). [9] Let U be a right S-semimodule.

An equivalence relation γ on U is an S-congruence relation if and only if u1

γ u2 and v1 γ v2 in U then (u1 + v1) γ (u2 + v2) and u1s γ u2s for all s ∈ S.

Definition 1.22. (Factor semimodule). [9] Let γ be an S-congruence rela-

tion on U and, for each u ∈ U , let u/γ be the equivalence class of m with re-

spect to this relation. Set U/γ = {u/γ | u ∈ U} and define operations of addi-

tion and scalar multiplication on U/γ by setting (u/γ)+(v/ρ) = (u+v)/γ and

(u/γ)s = (us)/γ for all u, v ∈ U and s ∈ S Then U/γ is an S-semimodule,

called the factor semimodule of M by γ. Moreover, we have a surjective

S-homomorphism U → U/γ defined by u 7→ u/γ.

Example 1.23. If V is a subsemimodule of a semimodule U , then V induces

an S-congruence relation ≡V on U , called the Bourne relation, defined as

u ≡V u′ if and only if there exists elements v, v′ ∈ V such that u+v = u′+v′

and we denote the equivalence class of u by u + V and the collection of all

equivalence classes by U/V instead of U/ ≡V . Also, if u1 + V = u2 + V then

there exists elements a, b ∈ V such that u1 + a = u2 + b.

Moreover, we have a surjective S-homomorphism πV : U → U/V defined by

u 7→ u/V .

Definition 1.24. [9] If X, Y , X ′ and Y ′ are right S-semimodules then an

S-homomorphism f : X → Y is:
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1. Monomorphism if and only if for any S-homomorphisms g, g′ : X ′ →

X then fg 6= fg′.

2. Epimorphism if and only if for any S-homomorphisms g, g′ : Y → Y ′

then gf 6= g′f .

3. Surjective (onto, or epic) if for each element y ∈ Y there is element

x ∈ X such that f(x) = y, that is Im(f) = Y .

4. Injective (one to one, or monic) if for all x1, x2 ∈ X, if f(x1) =

f(x2) implies that x1 = x2.

5. Isomorphism if it is both surjective and injective.

6. A surjective S-homomorphism having kernel {0} is an semi-isomorphism.

Prposition 1.25. If f : X → Y is an S-homomorphism between right S-

semimodules then:

1. f is monic if and only if it is an S-monomorphism.

2. If f is monic then ker(f) = 0, but the converse is not necessary true.

3. If f is surjective then it is an epimorphism and f(X) is subtractive,

but the converse is not true.

4. if f is an epimorphism and f(X) is subtractive then f is surjective.

Now, we prove (1) - (4) then we give counter examples for (2), (3).

Proof. 1. Let f : X → Y be an S-homomorphism of right S-semimodules.

If f is monic, it is clearly a monomorphism. Now, by contrapositive If

f is not monic then there exist elements x 6= x′ of X satisfying f(x) =

f(x′) . Define S-homomorphisms g, g′ : S → X where S considered as
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a right semimodule over itself, by setting g(s) = xs and g′(s) = x′s .

Then g 6= g′ but fg(s) = f(xs) = f(x)s = f(x′)s = f(x′s) = fg′(s) for

all s ∈ S, showing that f is not a monomorphism.

2. Let x ∈ ker(f) then f(x) = 0 = f(0) but f is monic then x = 0 so

ker(f) = 0.

3. Let g, g′ : Y → Y ′ such that gf(X) = g′f(X) but f is surjective and

so f(X) = Y then g(Y ) = g′(Y ) so f is an epimorphism. Moreover, let

a, b ∈ Y where a and a+ b ∈ f(X) since f is surjective f(X) = Y and

so b ∈ f(X) that is f(X) subtractive subsemimodule of Y .

4. Assume that f is an epimorphism in which f(X) is subtractive, but that

f is not surjctive. Set Y ′ = f(X) . Then we have S-homomorphisms

g, g′ : Y → Y/Y ′ given by g(y) = 0/Y ′ and g′(y) = y/Y ′, Moreover,

gf = g′f . Since f is not surjective, there exists an element y ∈ Y \

Y ′. Also, g(y) = g′(y) and so y/Y ′ = 0/Y ′ implies that there exists

elements f(x), f(x′) ∈ Y ′ such that y+f(x) = y′+f(x′) ∈ Y ′ but f(X)

subtractive so y ∈ Y ′ this is a contradiction and so g′(y) = y/Y ′ 6=

0/Y ′ = g(y) so g 6= g′ this contradicts that f is an epimorphism.

As we stated in the previous proposition kernel of a function may equal

zero but the function is not monic, see the following example:

Example 1.26. [9] Consider the totally ordered set R = {0, a, 1} where ad-

dition is defined to be max and multiplication to be min and let B = {0, 1}

where 1 + 1 = 1. Where R, B are semirings by (Example 1.10) and consid-

ered as semimodules over themselves. Let f : S → B be the character of f

defined by f(0) = 0 and f(a) = f(1) = 1, so ker(f) = {0} but f is not monic.
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Also, we stated that not every epimorphism is surjective, see the following

example:

Example 1.27. Consider the inclusion map i : Z+ → Z is an epimorphism

of Z+ semimodules since if f, g : Z → M then f ◦ i(Z+) = g ◦ i(Z+) then

f(Z+) = g(Z+) and so f = g, but i(Z+) = Z+ not Z and so i is not

surjective.

Remark 1.28. Let α : U → V be a homomorphism of S-semimodules. α is

an isomorphism if and only if there exists a homomorphism of S-semimodules

β : V → U such that αβ = idV and βα = idU .

Corollary 1.29. [9] Let f : X → Y be a surjective S-homomorphism of right

S-semimodules. Then there exists an S-semiisomorphism X/ker(f) → Y ,

denoted by X/ker(f) ' Y .

Definition 1.30. [7] Let Y be an S-semimodule a subsemimodule X of Y

is called:

� Essential (large) in Y , denoted by X E Y , if X ∩Z = 0 implies Z = 0,

for any subsemimodule Z ≤ Y .

� Superfluous (small) in Y , denoted by X � Y , if X + Z = Y implies

Z = Y , for any subsemimodule Z ≤ Y .

Definition 1.31. [7] Let X, X ′ be subsemimodules of Y , X ′ is called:

� Y -complement of X, if X ′ is maximal with respect to X ∩ X ′ = 0.

Moreover, every subsemimodule of Y has an Y -complement using the

maximal principle if X ≤ Y , then the set of subsemimodules of Y

whose intersection with X is zero contains a maximal element X ′.
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� Y -supplement of X if X ′ is minimal proper subtractive subsemimodule

with respect to X ′ +X = Y . In general, not every subsemimodule has

a supplement and a semimodule in which all its subsemimodules have

supplements is called supplemented semimodule.

Lemma 1.32. [6] Let M be an S-semimodule. Then if L and K are sub-

tractive subsemimodules of M , then L + K = {u + v : u ∈ L, v ∈ K} is a

subtractive subsemimodule of M .

Prposition 1.33. [7] Let B be a semimodule over a semiring S and A, A′

are subtractive subsemimodules of B with A′ an B-complement of A. Then,

A⊕ A′ E B.

Proof. Want to show that A⊕A′ E B, that is if (A⊕A′)∩Z = 0 then Z = 0

(where Z ≤ B) assume by contradiction that Z 6= 0 and (A ⊕ A′) ∩ Z = 0.

Now, we show that A ∩ (A′ ⊕ Z) = 0. Let a ∈ A ∩ (A′ ⊕ Z) want to show

that a = 0 let a = a′ + z for some a ∈ A, a′ ∈ A′ and z ∈ Z. Now,

a′ + z ∈ A ⊕ A′ since a ∈ A ⊕ A′ and so z ∈ A ⊕ A′ since a′ ∈ A ⊕ A′ and

A ⊕ A′ is a subtractive subsemimodule of B by (Lemma 1.32). Therefore

z ∈ (A⊕ A′) ∩ Z = 0 and a = a′ ∈ A ∩ A′ = 0 (since A′ is B-complement of

A) so a = 0 =⇒ A∩ (A′⊕Z) = 0 but A′⊕Z ⊇ A′ and this contradicts the

maximality of A′. Thus, Z = 0 and A⊕ A′ �B.

1.3 Steadiness

In this section we present a basic concept and some results related to it which

play an important role in our thesis.

Remark 1.34. [9] Each S-homomorphism of semimodules σ : U → V defines

a congruence relation ≡σ, on U by setting u ≡σ u′ where u, u′ are elements
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of U if and only if, σ(u) = σ(u′). Another congruence relation defined on

U by σ is the relation ≡ker(σ), by setting u ≡ker(σ) u′ if and only if, there

exists elements e, e′ ∈ ker(σ) satisfying u + e = u′ + e′. If u, u′ satisfying

u ≡ker(σ) u′ then surely u ≡σ u′, but the converse does not necessarily true.

Definition 1.35. [9] If σ : X → Y is an S-homomorphism and the relations

x ≡σ x′ and x ≡ker(σ) x′ coincide where x, x′ ∈ X, then the S-homomorphism

σ is steady.

Remark 1.36. A steady S-homomorphism σ : U → V is monic if and only

if ker(σ) = 0. Also, by (Corollary 1.29) if σ is a steady surjective morphism

of semimodules then V is S-isomorphic to U/kerσ, denoted by V ∼= U/kerσ.

Lemma 1.37. Let {fα : Kα → Mα}A be a family of right S-semimodule

morphisms and consider the S-homomorphism

f : ⊕
α∈A

Kα =⇒ ⊕
α∈A

Mα

Then f is steady if and only if fα is steady for every α ∈ A.

Lemma 1.38. Suppose that N , M , and Q are S-semimodules, where h :

Q → N surjective homomorphisms and f : N → M is a homomorphism.

Then:

1. If f ◦ h is steady homomorphism, then f is steady homomorphism.

2. Assume that h is steady. Then f is steady if and only if f ◦ h is steady.

Proof. (1) Suppose f ◦ h is steady. Assume f(n1) = f(n2) for some n1, n2

belongs to N . Since h is surjective, then (f ◦ h)(q1) = (f ◦ h)(q2) for some

q1, q2 belongs to Q. By assumption, f ◦ g is steady and so there exist k1, k2

belongs to ker(f◦h) such that q1+k1 = q2+k2 whence n1+h(k1) = n2+h(k2),
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but h(k1), h(k2) belongs to ker(f). Thus, f is steady.

(2) Suppose h and f are steady. Assume (f ◦ h)(q1) = (f ◦ h)(q2) for some

q1, q2 belongs to Q. Since f is steady, then h(q1)+k1 = h(q2)+k2 where k1, k2

belongs to ker(f). But, h is surjective, whence k1 = h(q′1) and k2 = h(q′2)

where q′1, q
′
2 belongs to Q, i.e. h(q1 + q′1) = h(q2 + q′2). Since h is steady,

q1 + q′1 + k′1 = q2 + q′2 + k′2 where k′1, k
′
2 belongs to ker(h) but, q′1 + k′1, q

′
2 + k′2

belongs to ker(f ◦ h). We conclude f ◦ h is steady.

Prposition 1.39. [9] Let f : U → V be an S-homomorphism between right

S-semimodules and g : U → W be a surjective steady S-homomorphism

between right S-semimodules where ker(g) ⊆ ker(f). Then:

1. A unique S-homomorphism h : W → V exists and satisfy f = hg;

2. If f is monic then h is monic;

3. ker(h) = g(ker(f)); and

4. h(W ) = f(U).

Proof. (1) Since g is surjective if w ∈ W then g−1(w) 6= ∅. If u, u′ ∈ g−1(w)

then u ≡g u′ and so, by steadiness, u ≡ker(g) u′ . Therefore, there exist

elements e, e′ ∈ ker(g) ⊆ ker(f) saisfying u+ e = u′ + e′ and so

f(u) = f(u) + f(e) = f(u+ e) = f(u′ + e′) = f(u′) + f(e′) = f(u′).

Now, define the function h : W → V by h : w → f(u), where u is any

element of g−1(w). Then h is well-defined, and it is an S-homomorphism

of semimodules satisfying f = hg. Moreover, if h′ : W → V is an S-

homomorphism satisfying f = h′g and if w ∈ W then for any u ∈ g−1(w) we

have h′(w) = h′g(u) = hg(u) = h(w), proving that h = h′.
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(2) Assume f is monic. If h(w1) = h(w2) and if ui ∈ g−1wi for i = 1, 2, then

f(u1) = hg(u1) = hg(u2) = f(u2) and so u1 = u2· Therefore w1 = g(u1) =

g(u2) = w2, proving that h is monic.

(3) Clearly g(ker(f)) ⊆ ker(h). Conversely, if w ∈ ker(h) and if u ∈ g−1(w)

then f(u) = h(w) = 0V so w = g(u) ∈ g(ker(f)).

(4) Straight from the definition.

Prposition 1.40. [9] Let f : U → V be an S-homomorphism of right S-

semimodules. Let g : W → V be a monic S-homomorphism between right S-

semimodules such that g(W ) is a subtractive subsemimodule of W containing

f(U). Then:

1. A unique S-homomorphism h : U → W exists and satisfy f = gh;

2. ker(h) = ker(f); and

3. h is monic if and only if f is monic.

Proof. (1) If u ∈ U then f(u) ∈ f(U) ⊆ g(W ). Since g is monic, there

exists a unique element w of W satisfying h(w) = f(u). Set h(u) = w. By

uniqueness, the function h : U → W is defined and satisfy f = gh, which is

unique.

(2) If u ∈ ker(f) then g(0W ) = 0V = f(u) so h(u) = 0W , proving that

u ∈ ker(h). Conversely, if u ∈ ker(h) then f(u) = gh(u) = 0V so u ∈ ker(f).

(3) Immediately from the definition.

1.4 Projective and Injective Semimodules

We review in this section basic results and definitions related to projective

and injective semimodules.
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Definition 1.41. [9] Let U be an S-semimodule. A subset {ui}i∈I of U is

called linearly independent if and only if, whenever
∑

j∈J ujsj = 0 we have

sj = 0 for all j ∈ J .

Definition 1.42. (Free). [9] A right S-semimodule X is free if X has a basis,

that is a subset {ej, j ∈ J} ⊆ X which is a linearly independent generating

set of X.

Prposition 1.43. [9] Suppose that S is a semiring and B is a right S-

semimodule then there exists a free S-semimodule A and a surjective S-

homomorphism from A to B.

Proof. Let B be a right S-semimodule. The result is trivial for the case of

B = {0}. Let B′ = B\{0} and let A = S(B′). Let σ : A → B is defined by

σ : h 7→
∑

b∈supp(h) h(b). This is obvious a surjective S-homomorphism.

Prposition 1.44. [9] Let A, B be right S-semimodules where B is free with

basisN . For any f ∈ AN , then there is a unique S-homomorphism γ : B → A

satisfying that γ(n) = f(n) for any n ∈ N .

Proof. Since B is free, any b ∈ B can be written uniquely as
∑

n∈N snn

where sn ∈ S only finitely many of sn's are nonzero. Let the function γ :

A → B defined by
∑
snn 7→

∑
snf(n). It is easy to show that γ is an S-

homomorphism satisfying the desired property. Now, to show the uniqueness

assume that ρ : A → B is an S-homomorphism satisfying that ρ(n) = f(n)

for all n ∈ N , then ρ(
∑
snn) =

∑
sn(ρ(n)) =

∑
snf(n) =

∑
snγ(n) =

γ(
∑
snn) and so γ = ρ. Thus γ is unique.

Definition 1.45. [9] A right S-semimodule P is projective if and only if

the following condition holds: if g : A→ B is surjective S-homomorphism of
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right S-semimodules and f : P → B is an S-homomorphism then there exists

an S-homomorphism h : P → A such that the following diagram commutes:

P B

A
h

f

g

that is, f = g ◦ h.

Prposition 1.46. [9] Every free right S-semimodule is projective.

Proof. Let X be a free right S-semimodule with basis E. Let g : A→ B be

a surjective S-homomorphism of right S-semimodules and let f : X → B be

an S-homomorphism. Since g is surjective, for every element e of E there is

ae of A such that g(ae) = f(e). By (Proposition 1.44), there is a unique S-

homomorphism h : X → A satisfying h(e) = ae. Then gh(e) = g(ae) = f(e)

for all e ∈ E Thus, by Proposition 2.5, we have f = gh.

Definition 1.47. [9] A right S-semimodule V is a retract of a right S-

semimodule U if and only if there is S-homomorphisms f : U → V and

g : V → U where f is surjective such that f ◦ g = iV .

Remark 1.48. If U and V are right S-semimodules and V is a direct sum-

mand of U then surely V is a retract of U . However, the converse is not

true.

Prposition 1.49. [9] A right S-semimodule is a retract of a free right S-

semimodule if and only if it is projective.

Proof. ⇒ If J is a projective right S-semimodule then, by (Proposition

1.43), there is a surjective S-homomorphism α : K → J where K is free

S-semimodule. Now, by projectivity there exists an S-homomorphism β :
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J → K in which αβ is the identity map on J .

⇐ Conversely, Let J be a retract of a free right S-semimodule K and let

α : K → J be a surjective S-homomorphism and β : J → K be an S-

homomorphism in which αβ is the identity map on J . Let g : A → B and

f : J → B be an S-homomorphisms where g is surjective. Now, by projectiv-

ity of K by (Proposition 1.46), there exists an S-homomorphism σ : K → A

in which gσ = fα. Therefore gσβ = fαβ, and so σβ : J → A is a map

having the property that is needed to prove projectivity of J .

Corollary 1.50. A retract of a projective right S-semimodule is projective.

Proof. Straightforward from the previous proposition.

Prposition 1.51. [9] If {Pj | j ∈ D} is a family of right S-semimodules then∐
j∈D Pj is projective if and only if each Pj is projective.

Proof. ⇒ Assume
∐

j∈D Pj is projective. Now each Pj is a retract of
∐

j∈D Pj

since each one of the Pj
′s is a direct summand of

∐
j∈D Pj, and hence is

projective. by the previous corollary.

⇐ Assume that Pj is projective for each j ∈ D. Now, for every j ∈ D, let

αj :
∐

j∈D Pj → Pj be the surjective S-homomorphism 〈Pt〉 7→ pj and let

βj : Pj →
∐

j∈D Pj be the inclusion map.

Let g : A → B be a surjective S-homomorphism of right S-modules and let

f :
∐

j∈D Pj → B be S-homomorphism. Then, since Pj's are projective for

each j ∈ D there exists an S-homomorphism hj : Pj → A such that the
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following diagram commutes;

Pj B

A
hj

fβj

g

that is, fβj = ghj. Now define the S-homomorphism h :
∐

j∈D Pj → A by

h : p 7→
∑

j∈D hjαj(p). Then for p ∈
∐

j∈D Pj we have

gh(p) =
∑
j∈D

ghjαj(p) =
∑
j∈D

fβjαj(p) = f(p)

and so, the diagram ∐
j∈D Pj B

A
h

f

g

commutes that is, f = gh.

Definition 1.52. [9] Let H, A and B be a right S-semimodules H is injective

if and only if, for a subsemimodule B ≤ A, any S-homomorphism from B to

H can be extended to an S-homomorphism from A to H.

B H

A

iB

f

h

that is, f = h ◦ iB.

Prposition 1.53. [9] Let J be an injective right S-semimodule. Then any

direct summand of J is injective.
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Proof. Let J ′ be a direct summand of J and let J ′′ be a subsemimodule of J

satisfying J = J ′⊕J ′′. So, there is a surjective S-homomorphism φ : J → J ′,

the kernel of which is J ′′. Let ψ : J ′ → J be the inclusion map. If Y is a

subsemimodule of a right S-semimodule X and if f : Y → J ′ is an S-

homomorphism then, by injectivity there is an S-homomorphism g : X → J

extending ψf in which the diagram

Y J

X

iY

ψf

g

commutes that is, ψf = giY . In particular , if y ∈ Y then g(y) ∈ J ′ and

so φg(y) = φψf(y) = f(y), therefore φg : X → B′ extends f in which the

diagram,

Y J ′

X

iY

f

φg

commutes that is, f = (φg)iY proving that J ′ is injective.



CHAPTER 2

WEAKLY PROJECTIVE

SEMIMODULES

In this chapter, we present the concept of weakly projective S-semimodule

that we will dualize in the next chapter. In section 1, we will state basic

properties of projective covers. In section 2, we introduce the concept of

weak relative projectivity of right S-semimodule. In section 3 we study some

properties related to the concept of weak projectivity in semiring theory

corresponding to ring theory.

2.1 Projective Covers of Semimodules

We present in this section the concept of projective covers and state some

of its basic properties and study the relation between projective covers of

semimodules.

Definition 2.1. [10] A surjective S-homomorphism f : A → B of S-

semimodules is coessential if and only if for any S-homomorphism g : C → A,

21
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if the map f ◦ g is surjective then g is surjective.

Definition 2.2. [10] Let X, P be a right S-semimodules, consider P together

with a homomorphism g : P → X then P is said to be projective cover of X

if:

1. P is projective,

2. g is coessential.

We can see that, if S is a ring the above definition is equivalent to the usual

one for modules over rings (since in this case if f is coessential then f is

superfluous).

Remark 2.3. Each projective semimodule is projective cover of itself.

Proof. Assume X is projective semimodule f : X → X is coessential. Since

for any S-homomorphism g : Y → X, the map f ◦ g : Y → X is surjective

only when g is surjective.

However, not all semimodules have projective covers.

Example 2.4. Q (set of rational numbers) has no projective cover as a Z-

module since Q is not free and the only Z-modules that have projective cover

are free modules.

Definition 2.5. [16] A surjective S-homomorphism of right S-semimodules

γ : U → V is superfluous if Kerγ � U .

Definition 2.6. [16] Let g : X → Y be a homomorphism of right S-

semimodules, g is called k-quasiregular if whenever K ≤ X, x ∈ X\K,

x′ ∈ K, and g(x) = g(x′) there exists e ∈ Ker g such that x = x′ + e.
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Corollary 2.7. [16] Let β : Y → Z be a superfluous k-quasiregular ho-

momorphism of right S-semimodules and let α ∈ HomS(X, Y ). If βα is

surjective, then α is surjective.

Proof. β(Y ) = Z = β(α(X)) since βα : X → Z and β : Y → Z are surjective

homomorphisms and β is k-quasiregular so the equality α(X) + Kerβ = Y

holds. Therefore, α(X) = Y since β is a superfluous S-homomorphism.

Prposition 2.8. [16] Let X be a subtractive S-subsemimodule of a right

S-semimodule Y and X � Y , then the canonical projection P : Y → Y/X

is a superfluous surjective S-homomorphism.

Proof. We want to show that Ker p � Y , claim Ker p = X. Now, want to

proof our claim:

⇒ X ⊂ Ker p, obviously.

⇐ Let b ∈ Ker p there are x1, x2 ∈ X satisfying b+x1 = 0+x2 = x2. Hence,

b ∈ X. So, Ker p ⊂ X and so our claim is proved. Thus, Ker p = X � p

and so, p is superfluous.

Remark 2.9. LetX be a subtractive S-subsemimodule of a right S-semimodule

Y , then the canonical projection πX : Y → Y/X is k-quasiregular.

Proof. Since X is subtractive Ker πX = X. Assume K ≤ Y , c ∈ Y \K,

c′ ∈ K, and πX(c) = πX(c′) then c+X = c′+X, but c = c+0 ∈ c+X = c′+X,

so, there exists x ∈ X = Ker πX such that c = c′ + x. Thus, the canonical

projection πX : Y → Y/X is k-quasiregular.

Prposition 2.10. If V is a subtractive S-subsemimodule of a right S-

semimodule U and V � U , then U and U/V have the same projective

cover.
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Proof. ⇒ Assume P is projective cover of U , hence, f : P → U is coessen-

tial and P is projective, want to show that P is projective cover of U/V .

Let g = πV ◦ f : P → U/V Since P is projective enough to show that

g : P → U/V is coessential, so, for any S-homomorphism h : C → P assume

that g ◦ h is surjective want to show that h is surjective, g ◦ h = πV ◦ (f ◦ h).

Since g ◦h surjective and πV is superfluous by (Proposition 2.8), then f ◦h is

surjective by (Corollary 2.7), but f is coessential, therefore, f ◦h is surjective

only when h is surjective. Thus, g is coessential. So, P is projective cover of

U/V .

⇐ Now, Assume that the converse is true, hence, g : P → U/V is coessen-

tial and P is projective, want to show that P is projective cover of U , by

projectivity of P there exists a homomorphism f : P → U such that the

diagram

P U/V

U
∃f

g

πV

commutes that is, g = πV ◦ f , since P is projective enough to show that

f : P → U is coessential, so, for any S-homomorphism h : C → P assume

that f◦h is surjective want to show h is surjective, but g◦h = πV ◦(f◦h), then

g ◦ h is surjective, because πV and f ◦ h are surjective, but g is coessential,

therefore, g ◦ h is surjective only when h is surjective, so f is coessential.

Consequently, P is projective cover of U .

Prposition 2.11. If pt : Pt(Ut) � Mt(t = 1, . . . , n) are projective covers,

then ⊕
∑n

t=1 pt : ⊕
∑n

t=1 Pt(Ut)� ⊕
∑n

t=1 Ut is a projective cover.
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Proof. If pt : Pt(Ui) � Ut(t = 1, . . . , n) are projective covers then each

Pt(Ut) is projective and so ⊕
∑n

t=1 Pt(Ut) is projective by (Proposition 1.51).

Also each pt : Pt(Ut) � Ut(t = 1, . . . , n) is coesential so for any ht : Ct →

Pt(Ut)(t = 1, . . . , n), pt ◦ ht : Ct → Ut is surjective only when ht is sur-

jective. Let ⊕
∑n

t=1 pt : ⊕
∑n

t=1 Pt(Ut) → ⊕
∑n

t=1 Ut this is a surjective

S-homomorphism since Im(⊕
∑n

t=1 pt) = ⊕
∑n

t=1Im(pt) = ⊕
∑n

t=1 Ut since

each pt is surjective. Now we want to show that ⊕
∑n

t=1 pt : ⊕
∑n

t=1 Pt(Ut)�

⊕
∑n

t=1 Ut is coessential so for any S-homomorphism⊕
∑n

t=1 ht : ⊕
∑n

t=1Ct →

⊕
∑n

t=1 Pt(Ut) if ⊕
∑n

t=1 pt◦⊕
∑n

t=1 ht : ⊕
∑n

t=1Ct → ⊕
∑n

t=1 Ut is surjective

want to show that ⊕
∑n

t=1 ht is surjective, since ⊕
∑n

t=1 pt ◦⊕
∑n

t=1 ht is sur-

jective then ⊕
∑n

t=1 Ut = Im(⊕
∑n

t=1 pt ◦ ⊕
∑n

t=1 ht) = Im(⊕
∑n

t=1 pt ◦ ht) =

⊕
∑n

t=1Im (pt ◦ ht) and so Ut = Im(pt ◦ ht) and so, pt ◦ ht is surjective for

each (t = 1 . . . n), then ht(t = 1 . . . n) is surjective since each pt(t = 1 . . . n)

is coessential. Now Im(⊕
∑n

t=1 ht) = ⊕
∑n

t=1Im(ht) = ⊕
∑n

t=1 Pt(Ut) since

ht is surjective for each (t = 1, . . . , n) and so ⊕
∑n

t=1 ht is surjective. Thus

⊕
∑n

t=1 Pt : ⊕
∑n

t=1 Pt(Ut)� ⊕
∑n

t=1 Ut is coessential.

2.2 Weak Projectivity in Semiring Theory

We present in this section the concept of weak relative projectivity of right S-

semimodule and we study properties related to the concept of weak projective

semimodule in semiring theory corresponding to ring theory given in [13]. We

check weak projectivity for some semimodules that have relations and study

the closeness of this concept that is under what conditions (finite direct sum,

subtractive subsemimodules . . . etc) weak projectivity is closed.

Definition 2.12. For a semimodules U and V assume U has a projective

cover σ : P → U . U is weak V -projective if for every map α : P → V there
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exists a surjective steady S-homomorphism β : P → U and a homomorphism

α̂ : U → V in which the following diagram

P V

U
∃β

α

∃α̂

commutes, that is α = α̂β.

Definition 2.13. A semimodule U is weak projective if U is weak V -projective

for each finitely generated right S-semimodule V .

Theorem 2.14. For semimodules U and V assume U has a projective cover

π : P → U . Then U is weak V -projective if for each α : P → V there exists

a subtractive subsemimodule K ⊂ kerα in which P/K ∼= U .

Proof. ⇒ Consider the homomorphism α : P → V . Since U is weak V pro-

jective the homomorphisms α̂ : U → V and γ : P → U exists and α = α̂γ,

and so ker γ ⊂ ker α. Also, P/ker γ ∼= U by (Remark 1.36). Therefore, this

direction is shown by choosing K = ker γ (kernels are subtractive subsemi-

modules).

⇐ Conversely, let α : P → V be a homomorphism and assume that there is

K ⊂ P such that P/K ∼= U , then there is a surjective homomorphism γ :

P → U which yields from the composition of the isomorphism, β : P/K → U

and the natural projection πK : P → P/K, that is γ = β◦πK , and so ker γ =

ker β ◦πK = ker πK = K ⊂ ker α, but γ is steady homomorphism since if p1

and p2 are elements of P satisfying γ(p1) = γ(p2) then β◦πK(p1) = β◦πK(p2)

and so πK(p1) = πK(p2) then p1 + K= p2 + K. It follows by (Proposition

1.39) that there is α̂ : U → V defined by α̂(u) = α(p), whenever γ(p) = u

which is well defined and α = α̂γ.
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Theorem 2.15. A right semimodule U is weak projective if and only if U

is weak Sn-projective for each n ∈ Z+.

Proof. Just the converse direction needed to be shown. Let V be a finitely

generated semimodule where α : P → V . Since V is finitely generated,

there is a surjective homomorphism γ : Sn → V for some n ∈ Z+. Since

P is projective so there exists a homomorphism α′ : P → Sn in which the

diagram

P V

Sn
∃α′

α

γ

commutes, that is α = γα′. Now, U is weak Sn-projective. So, there is K

⊂ kerα′ such that P/K ∼= U but kerα′ ⊂ kerα. Therefore, K ⊂ kerα and

so by previous theorem U is weak V -projective.

Prposition 2.16. For semimodules U and V where V is subtractive and

U assumed to have a projective cover σ : P → U . Next statements are

equivalent:

1. U is weak V -projective,

2. If X is subtractive subsemimodule of V then U is weak projective

relative to X,

3. If X is subtractive subsemimodule of V then U is weak projective

relative to V/X.

Proof. Since (2) and (3) gives (1) trivially, we want just to prove that (1)

gives (2) and (3).
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(1) ⇒ (2) Let condition (1) assumed to be true and let X be a subtractive

subsemimodule of V and α : P → X a homomorphism, there exists a map

γ = iXα : P → V since U is weak projective relative to V , there is a homo-

morphism γ̂ : U → V and steady surjective S-homomorphism β : P → U

such that γ = γ̂β, that is diagram (3.1) commutes,for some homomorphism.

Since β is a surjective steady homomorphism and Ker(β) ⊆ Ker(γ), the

range of γ̂(U) = γ(P) by (Proposition 1.39) and so γ̂(U) is contained in K.

Now, since iX is monic and iX(X) = X is a subtractive subsemimodule of X

containing γ̂(U) by (Proposition 1.40) there exists a map α̂ : U → X such

that γ̂ = iX α̂ but iXα = γ = γ̂β = (iX α̂)β then α = α̂β and then diagram

(3.2) commutes. Therefore, U is weak X-projective.

P V

(3.1) U
∃β

γ

∃γ̂

P X

(3.2) U
∃β

α

∃α̂

(1) ⇒ (3) Another time assume that condition (1) is true and let α : P →

V/X be a homomorphism. Now, projectivity of P yields that the map β :

P → V exists where diagram (3.4) commutes, that is α = πXβ. Since U

is weak projective relative to V there is a surjective steady homomorphim

γ : P → U and a homomorphism β̂ : U → V such that diagram (3.5)

commutes, that is β = β̂γ. Let α̂ = πX β̂. Then α̂γ = πX β̂γ = πXβ = α,
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that is diagram (3.6) commutes and so U is weak V/X projective.

P V/X

(3.4) V

∃β

α

πX

P V

(3.5) U
∃γ

β

∃β̂

P V/X

(3.6) U

∃γ

α

∃α̂

Prposition 2.17. For semimodules U and V where U is supplemented and

has a projective cover π : P → U , if U is weak V -projective then for every

subtractive subsemimodule X ⊂ V and for every k-quasiregular surjective

homomorphism α : P → X, there is a surjective homomorphism α̂ : U → X

in which for every supplement Y ′ of Kerα̂ in U where Y ′ subtractive proper

subsemimodule of U there is a subsemimodule Y ⊂ P , where P/Y ' U/Y ′

and Y +Kerα = P .

Proof. Let U assumed to be weak projective relative to V and α : P → V

be a surjective homomorphism. So, there is a surjective homomorphism

γ : P → U and a homomorphism α̂ : U → X in which α = α̂γ. Let Y ′

be a supplement of Kerα̂ in U and Y = γ−1(Y ′). Now, for any p ∈ P ,

we can write γ(p) as γ(p) = y′ + e, where y′ ∈ Y ′ and e ∈ Kerα̂. But,

α(p) = α̂γ(p) = α̂(y′) + α̂(e) = α̂(y′). Now, choose p1 ∈ γ−1(y′) ⊂ Y , then

γ(p1) = y′. Also, α(p1) = α̂γ(p1) = α̂(y′) = α(p). Since α is k-quasiregular so

there is e1 ∈ Kerα such that p1+e1 = p and so Y +Kerα = P . Also, P/Y '

U/Y ′ since Y is the kernel of the surjective map πY ′γ : P → U/Y ′.
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Prposition 2.18.

1. Let Yj, j = 1, 2, . . . n be a set of weak V -projective semimodules. Then

⊕nj=1Yj is weak V -projective.

2. If Y/X is weak K-projective semimodule and X is a subtractive S-

subsemimodule of a right S-semimodule Y with X � Y . Then Y is

weak projective relative to K.

3. If a semimodule Y is weak P(Y ) projective, then the semimodule Y is

projective.

Proof. (1) Let fj : Pj(Yj)→ Yj, (j = 1,...,n) be projective covers. By (Propo-

sition 2.11), ⊕
∑n

i=1 fj : ⊕
∑n

j=1 Pj(Yj) → ⊕
∑n

i=1 Yj is a projective cover.

Let α : ⊕
∑n

j=1 Pj(Yj) → N , and let ifj : Pj(Yj) → ⊕
∑n

j=1 Pj(Yj) be the

inclusion map. Since Y ′j s are weakly projective for each j, there exists a

surjective steady homomorphism γj : Pj(Yj) → Yj and φ̂j : Yj → N such

that diagram (3.7) commutes, that is φ̂jγj = αjifj . Set α̂ = ⊕
∑n

j=1 α̂j and

γ = ⊕
∑n

j=1 γj. Then diagram (3.8) commutes, that is α = α̂γ.

Pj N

(3.7) Yj

∃γj

α◦ifj

∃α̂j

⊕
∑n

j=1 Pj(Yj) N

(3.8) ⊕
∑n

j=1 Yj

∃γ

α

∃α̂

(2) Since X is a subtractive S-subsemimodule of a right S-semimodule Y

and X � Y . By (Proposition 2.10), P (Y ) = P (Y/X) (their projective cover
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is the same). Let α : P (Y ) → K and πX : Y → Y/X be the natural pro-

jection. A steady homomorphism γ : P (Y ) → Y/X and a homomorphism

α̂ : Y/X → K are exists because Y/X is weakly K-projective, such that

diagram (3.9) commutes, that is α̂γ = α. Now, because P (Y ) is projective,

there is γ′ : P (Y ) → Y where diagram (3.10) commutes, that is πXγ
′ = γ.

Because X � Y and X is subtractive, it follows by (Corollary 2.7) that γ′ is

surjective also γ′ is steady homomorphism since if p1 and p2 are elements of

P satisfying γ′(p1) = γ′(p2) then πXγ
′(p1) = πXγ

′(p2) and so γ(p1) = γ(p2)

by steadiness of γ there exists e1, e2 ∈ Kerγ such that p1 + e1 = p2 + e2,

but e1, e2 ∈ Kerγ′ that is γ′(e1) = γ′(e1) = 0 if not, that is γ′(e1) = a where

a 6= 0 then πXγ
′(e1) = πX(a) and so γ(e1) = a+X 6= 0 +X this implies that

e1 /∈ Kerγ and this contradicts our assumption so e1 ∈ Kerγ′ similarly for

e2 . We can easily check that diagram (3.11) commutes, that is φ̂πXγ
′ = φ.

Therefore, Y is weakly K- projective.

P K

(3.9) Y/X

∃γ

α

∃α̂

P Y/X

(3.10) Y
∃σ′

γ

πX

P K

(3.11) Y
∃γ′

α

∃α̂πX
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(3) Consider a semimodule Y and it’s projective cover is γ : P(Y )→ Y . If

Y is weak P(Y )-projective, then the identity map on P(Y ) factors through

Y

P(Y ) P

Y
∃f

iP(Y )

∃g

iP(Y ) = gf and iY = fg, this yields that Y ∼= P(Y ) and P(Y ) is projective,

therefore Y is projective.



CHAPTER 3

WEAKLY INJECTIVE SEMIMODULES

We dualize in this chapter some of the results of weak projectivity studied

in the previous chapter. In section 1, we state some basics about injective

envelopes. In section 2, we introduce the definition of weak injectivie right S-

semimodule and we study some properties related to this concept in semiring

theory corresponding to ring theory.

3.1 Injective Hulls (Envelopes) of Semimod-

ules

We present in this section the concept of injective envelopes and state some

of its basic properties and study the relation between injective envelops of

some semimodules.

Definition 3.1. [11] An injective homomorphism γ : X → Y of S-semimodules

is essential if and only if for any S-homomorphism ξ : Y → Z, if the map

ξ ◦ γ is injective then ξ is injective.

33
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Definition 3.2. [11] A subsemimodule X is large in Y if and only if the

inclusion map iX : X → Y is an essential homomorphism. Moreover, if X is

large in Y then, Y is called an essential extension of X.

Definition 3.3. [11] A semimodule H is an injective hull of a semimodule

U if:

1. If H is an essential extension of U and,

2. H is injective.

If a semimodule U has an injective hull H, we denote it as H(U). However,

an arbitrary semimodule may have no injective hull.

Remark 3.4. U is injective semimodule if and only if U = H(U).

Proof. Immediate from the definition of the injective envelope.

Prposition 3.5. Let C andD be semimodules and assumeD has an injective

hull. If D is an essential extension of C, then H(D) is an essential extension

of C.

Proof. Since D is an essential extension of C the inclusion iC : C → D

is essential, also since H(D) is an essential extension of D the inclusion

iD : D → H(D) is essential want to show that the inclusion f : C → H(D)

is essential. Assume not that is there is a homomorphism g : H(D) → K

such that g ◦ f is injective but g is not since iD : D → H(D) is essential

and g : H(D) → K is not injective and so g ◦ iD is not injective also since

iC : C → D is essential and g◦ iD : D → K is not injective and so (g◦ iD)◦ iC
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is not injective by injectivity of H(D) the diagram

C H(C)

D

iC

f

iD

commutes that is, f = iD ◦ iC and so g ◦ f = g ◦ (iD ◦ iC) which is not

injective which contradicts our hypothesis. Thus, f is essential and so H(D)

is an essential extension of C.

Prposition 3.6. Let A and B be semimodules and assume A has an injective

hull. If B is an essential extension of A, then H(A) = H(B).

Proof. Since B is an essential extension of A the previous proposition implies

that H(B) is an essential extension of A that is H(B) is essential extension

of A and H(B) is injective, so H(B) is an injective hull of A that is, H(A) =

H(B) .

3.2 Weak Injectivity in Semiring Theory

In this section we introduce the concept of weak relative injectivity of right

S-semimodule and study some properties related to the concept in semiring

theory corresponding to ring theory given in [12]. We check weak injec-

tivity for some semimodules that have relations and study the closeness of

this concept that is under what conditions (finite direct sum, subtractive

subsemimodules . . . etc) weak injectivity is closed.
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Definition 3.7. For a semimodules U and V assume U has an injective hull

ξ: U → H. U is weak V -injective if and only if for every homomorphism

φ : U → H(V ) there is a monomorphism (injective S-homomorphism) γ :

U → H(U) and a homomorphism φ̂ : V → U in which the diagram

V H(U)

U
φ̂

φ

γ

commutes, that is φ = γφ̂.

Definition 3.8. A semimodule U is weak injective if it is weak V -injective

for every finitely generated semimodule V .

Theorem 3.9. For a semimodule U which has an injective hull ξ : U →

H(U). U is weak V -injective if for every homomorphism α : V → H(U),

α(V ) ⊂ K ∼= U , for some subsemimodule K of H(U).

Proof. ⇒ Let α : V → H(U). Since U is weak V -injective there exists

homomorphisms γ : U → H(U) and α̂ : V → U in which α = γα̂ where γ

is monomorphism, and so α(V ) = γα(̂V ) ⊂ γ(U) ∼= U , so this direction is

shown by choosing K = γ(U) where γ(U) is subsemimodule of H(U).

⇐ Conversely, Assume that there is K satisfying that α(V ) ⊂ K ∼= U , then

there is an isomorphism f : K → U also consider the inclusion iK : K →
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H(U) then sine H(U) is injective

K H(U)

U

f

iK

γ

there is a monomorphism γ : U → H(U). Now we have α : V → H(U)

and γ : U → H(U) in which α(V ) ⊂ U ∼= γ(U) and γ(U) subtractive since

γ(U) ∼= U and U subtractive since f is surjective by (Proposition 1.25(3)).

Now using (Proposition 1.40) there is a homomorphism α̂ : V → U satisfying

α = γα̂ proving that U is weakly V -projective.

Prposition 3.10. Let U be a semimodule and assume U has an injective

hull. U is injective if U is weak H(U) injective.

Proof. Consider a semimodule U with injective hull γ : U → H(U). If we

assume that U is weak H(U)-injective, then the identity map on H(U) factors

through U

H(U) H(U)

U
f

iH(U)

g

iH(U) = gf and iU = fg this yields that U ∼= H(U) and H(U) is injective.

Thus, U is injective.

Prposition 3.11. For semimodules U and V assume U has an injective hull

ξ : U → H(U). Next statements are equivalent:

1. U is weak V -injective,

2. If X is subsemimodule of V then U is weakly V/X-injective,
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3. If X is subsemimodule of V then for each monomorphism α : V/X →

H(U) there is monomorphisms γ : U → H(U) and α′ : V/X → U such

that the diagram

V/X H(U)

U
α′

α

γ

commutes that is, α = γα′.

Proof. (1)→ (3). Since U is weak V -injective, let a homomorphism β : V →

H(U) there are homomorphisms γ : U → H(U) and β′ : V → U in which

β = γβ′ where γ is a monomorphism . Now, consider the homomorphism

α : V/X → H(U) where α(v + X) = β(v), and define α′ : V/X → U as

α′(v +X) = ψ′(v). Thus, α = γα′.

(3)→ (2). Trivially by definition.

(2) → (1). Since U is weak V/X injective, for each homomorphism α :

V/X → H(U) there is a monomorphism γ : U → H(U) and a homomorphism

α′ : V/X → U in which α = γα′. Let us define β : V → H(U) as β(v) =

α(v + X) and β′(v) = α′(v + X), then β = γβ′. Thus, U is weak V -

injective.

Theorem 3.12. A semimodule U is weak injective if and only if U is weak

Sn-injective for all n ∈ Z+.

Proof. Just the converse direction needed to be shown. Let V be a finitely

generated semimodule where α : V → H(U). Since V is finitely generated,

there is a surjective homomorphism ρ : Sn → V for some n ∈ Z+. Since

U is weak Sn-injective, so by (Theorem 3.9) for each homomorphism αρ :
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Sn → H(U), αρ(Sn) ⊂ K ∼= U for some subsemimodule K of H(U), and

so α(ρ(Sn)) ⊂ K ∼= U , but since ρ is surjective ρ(Sn) = V . Therefore,

α(V ) ⊂ K ∼= U for some K ≤ H(U). Thus, U is weakly V injective.

Prposition 3.13. For semimodules U and V , assume U has an injective hull

ξ : U → H(U). U is weak V -injective if and only if for each subsemimodule

X of V and for every monomorphism α : V/X → H(U):

1. There exists a monomorphism α′ : V/X → U ,

2. If C is complement of α′(V/X) in U , where C and α′(V/X) are sub-

tractive subsemimodules of U , there exist C ′ ⊆ H(U) such that C ′ ∩

α(V/X) = 0 and X ′ ∼= X.

Proof. ⇒ Let α : V/X → H(U) be a monomorphism. Using Proposition

3.11(3), there are homomorphisms γ : U → H(U) and α′ : V/X → U in

which α = αγ′ where γ is monomorphism. first part is done. Now for (2);

Let C be a complement of α′(V/X) in U , then C ′ = γ(C) ∼= C and C ′ ∩

α(V/X) = 0, if not there exists 0 6= x ∈ C ′ ∩ α(V/X) and so, 0 6= γ−1(x) ∈

γ−1(C ′)∩γ−1(α(V/X)) = C∩α′(V/X) a contradiction. Thus C ′∩α(V/X) =

0.

⇐ Conversely, let α : V/X → H(U) be a monomorphism, there is α′ :

V/X → U by (1). Now, Let T be a complement of α′(V/X) in U , then

α′(V/X) ⊕ T is large in U and so H(α′(V/X) ⊕ T ) = H(U) so this gives

a monomorphism γ : α′(V/X) ⊕ T → H(U). Since α′(V/X) ⊕ T E U this

yields a homomorphism α′(V/X)⊕ T → U by injectivity of H(U), γ can be
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extended to a monomorphism ψ : U → H(U). It is immediate that ψα′ = α,

that is the diagram

V/X H(U)

U
α′

α

ψ

commutes. Then, by Proposition 3.11(3) U is weakly V -injective.

Prposition 3.14. 1. If X and Y are weak V -injective semimodules, then

X ⊕ Y is weak V -injective.

2. If Y is weak V -injective and Y is large in X, then X is weak V -injective.

Proof. 1. Since X is weakly V -injective. Then by (Theorem 3.9) for each

homomorphism ψ1 : V → H(X), ψ1(V ) ⊂ K ∼= X for some sub-

semimodule K of H(X). Also, Y is weak V -injective, so for each

homomorphism ψ2(V ) ⊂ L ∼= Y for some submodule L of H(Y ). Let

ψ : N → H(X)⊕H(Y ). Then ψ(V ) = ψ1(V )⊕ψ2(V ) ⊂ K⊕L ∼= X⊕Y

hence X ⊕ Y is weak V -injective.

2. Since Y large in X, then H(Y ) = H(X) by (Proposition 3.6) X is weak

V -injective.



CONCLUSION

In this thesis we generalized the concept of weakly projective module for

semimodule over semiring which is weakly projective semimodule and we

studied some of its basic characteristics which are analogous to ring the-

ory, also we dualize the concept of weakly projective semimodule for weakly

injective semimodule and we studied its basic properties in a similar manner.
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FUTURE WORK

It could be interesting to study the relations between the concepts of weakly

projective and weakly injective semimodules and under what conditions a

relation may exists.

When weakly projective semimodule is weakly injective and the

converse?
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